- 分析几何学的历史
- 分析几何学的主要代表
- 皮埃尔·德·费马
- 雷内·笛卡尔
- 分析几何学的基本要素
- 直角坐标系
- 直角坐标系
- 极坐标系
- 线的笛卡尔方程
- 直线
- 圆锥形
- 圆周
- 比喻
- 椭圆
- 双曲线
- 应用领域
- 卫星天线
- 吊桥
- 天文分析
- 卡塞格林望远镜
- 参考文献
在解析几何研究线和几何形状通过在给定的坐标系统中应用基本代数技术和数学分析。
因此,分析几何是数学的一个分支,它详细分析了几何图形的所有数据,即体积,角度,面积,相交点,它们的距离等。
分析几何的基本特征是它允许通过公式表示几何图形。
例如,圆周由第二级的多项式方程表示,而线由第一级的多项式方程表示。
由于需要提供对迄今为止还没有解决方案的问题的解答,因此分析几何学出现于17世纪。它的最高代表是RenéDescartes和Pierre de Fermat。
今天,许多作者指出它是数学史上的革命性创造,因为它代表了现代数学的开始。
分析几何学的历史
分析几何学一词出现于十七世纪的法国,是因为需要提供解决问题的答案,而这些问题无法单独使用代数和几何学解决,但解决方案在于两者的结合使用。
分析几何学的主要代表
在17世纪,两个法国人偶然地进行了研究,以一种或另一种方式结束了解析几何的创建。这些人是Pierre de Fermat和RenéDescartes。
目前认为解析几何的创建者是RenéDescartes。这是由于他在费马(Fermat's)之前出版了他的书,并与笛卡尔(笛卡尔)深入分析了几何学。
但是,费马和笛卡尔都发现线和几何图形可以用方程表示,而方程可以表示为线或几何图形。
根据两者的发现,可以说两者都是解析几何的创造者。
皮埃尔·德·费马
皮埃尔·德·费马特(Pierre de Fermat)是一位法国数学家,生于1601年,去世于1665年。在他的一生中,他研究了Euclid,Apollonius和Pappus的几何形状,以解决当时存在的测量问题。
后来,这些研究触发了几何的创建。他们最终在他的书“平坦而坚实的地方简介”(Ad Locos Planos et Solidos Isagoge)中得到表达,该书在他于1679年去世后14年出版。
皮埃尔·德·费马(Pierre de Fermat)在1623年将解析几何应用于几何位置上的阿波罗尼乌斯定理。他还是第一个将解析几何应用于三维空间的人。
雷内·笛卡尔
他又名Cartesius,是一位数学家,物理学家和哲学家,他于1596年3月31日在法国出生,于1650年去世。
勒内·笛卡尔(RenéDescartes)于1637年出版了他的著作《关于正确地进行理性和寻求科学真理的方法的论述》,该书被人们称为“方法”,并由此将解析几何一词引入了世界。它的附录之一是“几何”。
分析几何学的基本要素
分析几何由以下元素组成:
直角坐标系
该系统以RenéDescartes的名字命名。
既不是他的名字,也不是完成笛卡尔坐标系的人,而是他讲正数坐标的人,以便将来的学者完成它。
该系统由直角坐标系和极坐标系组成。
直角坐标系
直角坐标系被称为由两个相互垂直的数字线形成的平面,其中截止点与公共零点重合。
然后,该系统将由一条水平线和一条垂直线组成。
水平线是X轴或横坐标轴。垂直线将是Y轴或纵坐标轴。
极坐标系
该系统负责验证点相对于固定线和线上的固定点的相对位置。
线的笛卡尔方程
当知道它经过的两个点时,可以从一条直线上获得此方程。
直线
它是不会偏离的,因此既没有弯曲也没有角度。
圆锥形
它们是由穿过固定点的线和曲线的点定义的曲线。
椭圆,圆周,抛物线和双曲线是圆锥曲线。下面分别介绍它们。
圆周
周长称为闭合平面曲线,它是由平面上与内部点(即从圆周中心)等距的所有点形成的。
比喻
它是平面中与固定点(焦点)和固定线(方向)等距的点的轨迹。因此,准线和焦点是定义抛物线的要素。
抛物线可以作为圆锥形旋转表面通过平行于母线的平面的一部分而获得。
椭圆
描绘在平面中移动时的点的闭合曲线称为椭圆,其与两(2)个固定点(称为焦点)的距离之和是恒定的。
双曲线
双曲线称为曲线,定义为平面中各点的轨迹,对于该点,两个固定点(焦点)的距离之差是恒定的。
双曲线具有穿过焦点的对称轴,称为焦轴。它还有另一个,即线段的平分线,线段的两端具有固定点。
应用领域
分析几何在日常生活的不同领域中有许多应用。例如,我们可以在当今每天使用的许多工具中找到抛物线,这是分析几何学的基本要素之一。其中一些工具如下:
卫星天线
抛物面天线具有由抛物线产生的反射器,该抛物线在所述天线的轴上旋转。由于这种作用而产生的表面称为抛物面。
抛物面的这种能力称为抛物面的光学性质或反射性质,因此,抛物面可能反射其从构成天线的馈电机构接收的电磁波。
吊桥
当绳索支撑的重量均匀但同时远大于绳索本身的重量时,结果将是抛物线。
该原理对于吊桥的建造至关重要,而吊桥通常由宽阔的钢缆结构支撑。
悬索桥中的比喻原理已用于诸如美国旧金山市的金门大桥或位于日本并连接日本岛的明石海峡大桥的结构中。淡路与本国的主要岛屿本顺。
天文分析
分析几何学在天文学领域也有非常具体和决定性的用途。在这种情况下,占据中心位置的解析几何元素是椭圆;约翰内斯·开普勒的行星运动定律反映了这一点。
德国数学家和天文学家开普勒确定椭圆是最适合火星运动的曲线。他以前曾测试过哥白尼提出的圆形模型,但在实验过程中,他推断出椭圆形所绘制的轨道与他正在研究的行星完全相似。
多亏了椭圆,开普勒才得以证实行星在椭圆轨道上运动。这种考虑就是开普勒所谓第二定律的陈述。
通过这一发现,后来由英国物理学家和数学家艾萨克·牛顿(Isaac Newton)丰富了,有可能研究行星的轨道运动,并增加对我们所属于的宇宙的了解。
卡塞格林望远镜
卡塞格林望远镜的发明者是法国出生的物理学家洛朗·卡塞格林(Laurent Cassegrain)。该望远镜使用解析几何原理,因为它主要由两个反射镜组成:第一个是凹镜和抛物线镜,第二个镜是凸镜和双曲线镜。
这些反射镜的位置和性质使得不会发生称为球差的缺陷。此缺陷会阻止光线在给定透镜的焦点中反射。
卡塞格林望远镜对行星观测非常有用,而且用途广泛且易于使用。
参考文献
- 解析几何。2017年10月20日从britannica.com检索
- 解析几何。于2017年10月20日从encyclopediafmath.org检索
- 解析几何。于2017年10月20日从khancademy.org检索
- 解析几何。于2017年10月20日从wikipedia.org检索
- 解析几何。于2017年10月20日从whitman.edu检索
- 解析几何。于2017年10月20日从stewartcalculus.com检索
- 平面解析几何2017年10月20日检索