该关联属性加成的代表各种数学组的加法运算的关联性质。其中,所述集合的三个(或更多)元素相关联,分别称为a,b和c,因此始终为真:
a +(b + c)=(a + b)+ c
通过这种方式可以确保,不管进行操作的分组方式如何,结果都是相同的。
图1.在进行算术和代数运算时,我们多次使用加法的关联属性。(绘画:freepik组成:F。Zapata)
但应注意,关联属性与可交换属性不是同义词。也就是说,我们知道加数的顺序不会改变总和,或者因子的顺序不会改变乘积。因此,总和可以这样写:a + b = b + a。
但是,在关联属性中,它有所不同,因为要添加的元素的顺序得以保持,并且首先执行的操作发生了变化。这意味着首先添加(b + c)并向此结果添加a与开始将a与by添加到添加c的结果无关紧要。
许多重要的操作(例如加法)是关联的,但不是全部。例如,在减去实数时,会发生以下情况:
a-(b-c)≠(a-b)-c
如果a = 2,b = 3,c = 1,则:
2–(3-1)≠(2-3)-1
0≠-2
乘法的关联性质
正如加法所做的那样,乘法的关联属性指出:
a˟(b˟c)=(a˟b)˟c
对于实数集,很容易验证是否总是这样。例如,使用值a = 2,b = 3,c = 1,我们有:
2 ˟(3 ˟ 1)=(2 ˟ 3)˟ 1→2 ˟ 3 = 6 ˟ 1
6 = 6
实数满足加法和乘法的关联性质。另一方面,在另一组(例如向量)中,总和是关联的,但叉积或向量积却不是。
乘法关联属性的应用
满足关联属性的操作的一个优点是能够以最方便的方式进行分组。这使分辨率变得容易得多。
例如,假设在一个小型图书馆中有3个书架,每个书架有5个书架。每个书架上有8本书。一共有几本书?
我们可以执行以下操作:总书籍=(3 x 5)x 8 = 15 x 8 = 120本书。
或像这样:3 x(5 x 8)= 3 x 40 = 120本书。
图2.乘法的关联属性的一种应用是计算每个书架上的书籍数量。图片由F.Zapata创建。
例子
-在自然数,整数,有理数,实数和复数的集合中,满足加法和乘法的关联性质。
图3.对于实数,加法的关联属性已实现。资料来源:维基共享资源。
-对于多项式,它们也适用于这些运算。
-在减法,除法和乘幂运算的情况下,关联属性不适用于实数或多项式。
-在矩阵的情况下,满足相加和相乘的性质,尽管在后一种情况下,不满足可交换性。这意味着,给定矩阵A,B和C,确实是:
(A x B)x C = A x(B x C)
但是… A x B≠B x A
向量中的关联性质
向量与实数或复数形成不同的集合。为向量集定义的运算有些不同:有加,减和三种乘积。
向量之和,数字,多项式和矩阵都满足关联性质。对于标量乘积,矢量之间的乘积和叉乘标量,后者不能满足要求,但考虑到以下因素,标量乘积(它是矢量之间的另一种运算)的确可以满足标量积:
-标量与向量的乘积将得出向量。
-当两个向量按标量相乘时,将得到一个标量。
因此,在给定向量v,u和w以及另外一个标量λ的情况下,可以写出:
-向量和:v +(u + w)=(v + u) + w
-Scalar产物:λ(v • Ù)=(λ v)• ù
后者可能是由于这样的事实:v • ü是一个标量,λ v是一个向量。
然而:
v ×(u × w)≠(v × u) × w
通过对项进行分组分解多项式
此应用程序非常有趣,因为如前所述,关联属性有助于解决某些问题。单项式的总和是关联的,当乍一看没有明显的公因数时,可以将其用于因式分解。
例如,假设要求您分解:x 3 + 2 x 2 + 3 x +6。这个多项式没有公因数,但是让我们看看如果将其按以下方式分组会发生什么:
第一个括号的公因子为ax 2:
第二个因素是:
练习题
-练习1
一栋教学楼有4层,每层都有12间教室,内部有30张桌子。学校总共有多少张桌子?
解
通过应用乘法的关联属性可以解决此问题,让我们看看:
办公桌总数= 4层x 12教室/地板x 30课桌/教室=(4 x 12)x 30课桌= 48 x 30 = 1440课桌。
或者,如果您愿意:4 x(12 x 30)= 4 x 360 = 1440书桌
-练习2
给定多项式:
A(x)= 5x 3 + 2x 2 -7x + 1
B(x)= x 4 + 6x 3 -5x
C(x)= -8x 2 + 3x -7
应用加法的关联属性来找到A(x)+ B(x)+ C(x)。
解
您可以将前两个分组,并将第三个添加到结果中:
A(x)+ B(x)= + = x 4 + 11x 3 + 2x 2 -12x +1
立即添加多项式C(x):
+ = X 4 + 11X 3 - 6× 2 -9x -6
如果使用选项A(x)+求解,则读者可以验证结果是否相同。
参考文献
- Jiménez,R.,2008年。代数。学徒大厅。
- 数学很有趣,可交换,关联和分配律。从以下位置恢复:mathisfun.com。
- 数学仓库。关联属性的定义。从以下位置恢复:mathwarehouse.com。
- 科学。加法和乘法的关联和交换性质(带有示例)。从以下网站恢复:sciencing.com。
- 维基百科。关联属性。摘自:en.wikipedia.org。